The main aim of this work was to study the mechanisms of interaction between iron(II) ions and humic acids as a function of pH, iron concentration and various humic acids chemical properties, including the degree of humification, elemental composition, aromaticity and content of acidic functional groups. T

he results indicated that iron was bound by humic acids at pH 7 in amounts ∼2 times higher than at pH 5 (averaged capacities: 117 and 57 cmol/kg, respectively). Iron binding at pH 7 increased with increasing the total carboxylic and phenolic groups content and the degree of humification of humic acids (R-coefficients: 0.99 and 0.95, respectively).

The stability of humic acid-iron complexes at pH 7 were only slightly lower than at pH 5 due to iron hydroxides formed at pH > 5 (averaged stability constants: 5.18 and 5.26, respectively). Iron coordination mode varied depending on pH: at pH 5, the bidentate (chelate) mode dominated, whereas at pH 7 the bridging mode appeared prevalent.

The total amount of bound iron was much smaller than the content of the carboxylic and phenolic groups in humic acids, on average by ∼80 (pH 7) and ∼90.1% (pH 5) indicating the occurrence of steric effects in humic acid structure i.e. the reduction of the complexation capacity of free functional groups by adjacent groups occupied by iron and/or the formation of intramolecular aggregates with iron hindering the access of further metal ions.

At pH 5 the complexes were soluble in the iron concentration range positively correlated to carboxylic and phenolic groups content, showing the protective nature of negatively charged functional groups on the stability of the solution.

At this pH, the destabilization of the system was governed by the neutralization of humic acid charged structures by metal cations and the compression of the double electric layer.

At pH 7 the stability of the humic acid-iron solution was largely determined by the form of iron, mainly by the precipitation of metal hydroxides acting as a flocculant destabilizing the solution by co-precipitation of humic acid-iron complexes.